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Compact Finite

Volume Methods for the Diffusion Equation*

Milton E. Rose
Department of Mechanical Engineering
N.C. A&T State University
Greensboro, NC 27411

Abstract

We describe an approach to treating initial-boundary value problems by finite
volume methods in which the parallel between differential and difference arguments is closely
maintained. By using intrinsic geometrical properties of the volume elements, we are able to
describe discrete versions of the div, curl, and grad operators which lead, using summation-by-
parts techniques, to familiar energy equations as well as the div curl = 0 and curl grad=0
identities. For the diffusion equation, these operators describe compact schemes whose
convergence is assured by the energy equations and which yield both the potential and the flux
vector with second order accuracy. A simplified potential form is especially useful for obtaining
numerical results by multigrid and ADI methods. The treatment of general curvilinear coordinates

3
is shown to result from a specialization of these general results. -

*This research was sponsored by the National Aeronautics and Space
Administration under NASA Contract No. NAG-1-812 and by the Air Force Office of Scientific
Research under Contract No. AFOSR F49620-89-C-0010.
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Compact Finite

Volume Schemes for the Diffusion Equation

Introduction:
Let V be a domain with boundary surface S on which n is the outward unit normal.
This paper describes a finite volume scheme for solving the diffusion equation for a potential ¢

and fluxu in the form

D.E. ¢y =divu - f, inV AVA
gradd=u

B.C. ount+fphp=g on S, t=0 \2\

I.C. ¢=2gp inV, t=0 \3\

in both the steady and unsteady cases. We recall that the solution of this problem satisfies an

‘energy’ equation

vy fomes-|
< V¢2dV+ yuudv=Jgouds - ofav W\

which follows by multiplying the first equation in \1\ by ¢ and integrating by parts. We also recall
that when f = 0 the maximum-minimum values of ¢ either lie on the boundary S or, in case t = 0,
in V itself. )
A discrete form of these results will hold for the finite volume scheme and includes
results about generalized curvilinear coordinate mappings as a special case. We will identify finite
volume operators divy,, grady,, and curly, which are consistent with their differential counterparts
and from which a discrete energy expression corresponding to \d\ will follow by simple
summation-by-parts identities. The important identities divy, curly -= 0 and curly, grady, = 0 will

also remain valid, as we will show at a later point in the paper. A potential form involving the
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operator divy, gradd, which is obtained by eliminating u, leads to a symmetric, positive definite
operator to which multigrid and other fast solution techniques are applicable.

The fact that the finite volume schemes described here lead to discrete energy
expressions is the principal result of this paper. It insures that the schemes converge. We will also
find that the approximations to both ¢ and u will be second order accurate. This result is similar to
that obtained for mixed finite element methods ([1], [8]) and it is possible, in fact, to view the
present scheme as a finite element method which involves non-conforming elements ([21,14D).

Many of these ideas can be illustrated most simply for steady, one-dimensional
problems, for which reason we first discuss the equations ¢’= u, u’= f in detail. We will find it
natural to introduce a primary mesh, which is formed by the endpoints of subintervals into which
the basic domain is divided, and a dual mesh, which is formed by the centerpoints of the primary
mesh. The variables ¢ and u will be associated with the primary mesh while another variable y
will be associated with the dual mesh. An algebraic relationship between ¢, y and u on each
subinterval provides an approximation to the solution operator (for which reason the scheme is
called compact) and the solution in the large is obtained by imposing continuity conditions for ¢
and u at points of the primary mesh. Both ¢ and y will be found to converge with second order
accuracy to the solution at the points at which they are defined. Furthermore, as noted above,
although u will be defined by one-sided divided differences involving ¢ and , its convergence
will also be second order accurate as a result of the continuity conditions imposed.

In extending these ideas to higher dimensional problems by subdividing the
solution domain V into volume elements we will also find that a primary and dual grid play a
natural role. Now the variables ¢ and u will be associated with the centerpoints of the faces of a
volume element while y will be associated with the center of the element. However, an additional
variable { (or a box-variable x) which is associated with the edges (vertices) of the element will
also be required. The compact scheme will describe relationships between these variables which

produce second order accurate results at the points indicated. In the method discussed here, the
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non-tangential components of u on a face of an element are obtained with the use of one-sided
differences in terms of ¢ and y while its tangential components are determined solely by the edge
values {, and these are obtained in terms of y at points of the dual grid by bilinear interpolation. In
the case of (uniform or nonuniform) Cartesian or orthogonal coordinate elements, the variables {
as well as the tangential components of u on faces of elements can be obtained by postprocessing,
if required.

Some of these ideas are familiar from applications of finite volume methods to fluid
dynamics and are described in Peyret and Taylor [5] and in a review paper by Vinokur [9]. A
focus of many such methods is on the treatment of conservation laws for inviscid fluids. As noted
by these authors, the primary and dual grids often play a role in many such schemes whenever
gradient terms are included, as occur when viscous effects arise. Indeed, the need to accurately
approximate quantities like the stress tensor at boundaries of general domains is a principal reason
to resort to finite volume methods, although their use may add significantly to the cost of
computations. To understand some of the problems which can arise, the diffusion equation can
serve as a useful model. We will find that the relationships between grid variables differ in
important respects from those described elsewhere. Many schemes place primary emphasize on
the vertex (box) variables and most methods deliberately avoid the use of one-sided differencing to
approximate the flux except, perhaps, at boundaries. Although compact schemes related to those
described here have been used for Cartesian grids, e.g., [2], [7], the roles of the variables were not
completely developed.

The paper concludes by describing the rather staightfoward modifications which are
required to treat the time-dependent problem. The result is a Crank-Nicholson-type scheme and
energy arguments provide convergence estimates for the finite volume method. We are also able to
show that energy arguments can be adapted to a Peaceman-Rachfor‘d ADI scheme.

This paper reflects many valuable insights gained through discussions with
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colleagues. I mention with particular appreciation T.B. Gatski, D. Gottlieb, H.-O. Kreiss, and

G. Strang.
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I. Steady One-Dimensional Problems

I.1. Notations

On an interval [L_, 1,] consider the problem :

D.E. } w=f \L1a\
¢ =u
B.C. =g, forx=1,. \L1b\

The associated energy equation is

f¢f dx +fu2 dx = (gu)y, - (du)_ : L2\

Divide [I_, 14} into M non-overlapping subintervals I; = {x| Xj-1/2 S XS Xj+ 12}
with centerpoints Xj, j=172, 3/2,..., M-1/2. The points Xj, = 1,2,...,M-1, are endpoints of the
subintervals which lie interior to [L, 1+]. We let I, I denote the sets of indices corresponding to
these points:

I.={1,2,.M-1} (interior endpoints)
I.= {172, 3/2,...,.M - 1/2} (centerpoints).
We adopt the finite-difference notations Ax; = Xi+ 12 — Xj_1/2, hj = Ax;/2, u(x;) = u;. By o)

introducing the central average and difference operators

p &= (dj+12 + =122, Adj= (D172 - dj-1/2)- \L3\

we can verify the summation-by-parts identities
Aldw) = (ud) (Ay) + (AD) (uy) \I.4a\
udy) = (ud) (ny) + (Ad) (Ay)/4. \L4b\

Both will play a central role in establishing energy results.
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Figure 1. An interval showing the association of the variables ¢, u with its endpoints and

‘of y with its centerpoint.

1.2. A Compact Scheme

In each subinterval Ij, construct an approximate solution using values ¢ji1/2 as
boundary data. Specifically,

(i) forj € I, set

AUj =Uj+1/2 ~ Yj-1/2 =ij fj \LS\
hjuji 12 = @e12 -9y \I. 6a\
hyuj_172 = (W - 4j-1/2) \L.6b\

Adopting the convention that wj indicates an approximation to the potential solution at the center of

the interval, while ;4 | /3 indicates the approximation at its endpoints we see that \I.5\is a central
difference approximation to u'= f, while \I.6\ approximates ¢"=u by one-sided differences. Then
eqs\L.5\, \L.6\ can be solved for uj+1/2 and y; in each interval in terms of dj+1/2 considered as
boundary data. £

(ii) Next, require that both u and ¢ shall be continuous across every endpoint common to two

intervals, i.e.,

[u]; = [¢}; =0 fori € I, (endpoints) L7
(This is implied by our notation, since we have not distinguished between the right- and left-hand
limits of u and ¢ at endpoints.) Using \I.6\to evaluate u;, 1 at the right and left endpoints of the

adjacent intervals Ij_1 2 Ij+1/2 we find
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Axi+1/2 Wi+ 1/2 = (Wis1 - Wi iele \L&\
which indicates that the accuracy of u may be higher than that suggested by the one-sided
difference expressions which originally defined u in\I.6\. Also note that \I.6\ can be used to
express the continuity condition [u]; = 0 in terms of ¢, y with the result

(@ - wi-172)/hi-12= Wi 12 - )/ his 12 \L9a\
and which, in the case of equal intervals, reduces to
¢ = py; i€ Ie (endpoints) \I.9b\
The addition of the boundary conditions leads to a determined system of algebraic equation; for the
M values of y and the M+1 values of p and u.
The special nature of this system is worth noting. By eliminating u from \I.5\ using
\I.6\ we find, in the case of equal intervals,
(nd; - wp = 2h2f i € I (centerpoints)  \I.10a\
and if we also write the continuity conditions \I.9b\ in the form
(uy; - =0 el (endpoints) \L.10b\
it is evident that ¢;, y; are the odd-even components of the solution vector of a tri-diagonal system
of equations which is, thus, easily solved. In sharp contrast to \I. 10\, the standard finite difference
scheme for solving \I. I\ is
(nd; - wp) = h2f iel UI, \L. 10c\
so that some differences with standard numerical treatments of differential equations are to be

expected using the schemes considered in this paper.
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1.3. The Energy Equation and Convergence:

We will now show that this scheme leads to a discrete form of the energy equation
M\ For simplicity, we will assume a uniform mesh. Add and subtract the expressions
(Ax2) ujs 12 =+ Gjx172 - W)
given in\I.6\ to obtain
Ax Hyj = Acbj \.11a\
;= ud; - Ax Au{4 \L.11b\

and we see that the approximations to ¢ and y are second order with respect to the center of an

interval. Then, starting with

AUj = AX fJ , AL S\
multiply by y and use \I.1 1\ and \l.4\ to obtain
y Au = (up - (Ax/4) Au)-Au \L 12\

= Aldu) - (nu Ad + (A/4)(Au)2)
= Adw) - Ax ((nu)2 + (Au)2/4)
= A(¢u) - Ax u(uz).
(Here and in the following we omit subscripts when no confusion is likely to arise). Summing

over centerpoints of intervals

¢

U
i

1,
ZIC (Wj Ay; + Ax Llujz) = (¢U)!1_ —ZIe

Because of the continuity conditions, the jumps [ ] vanish and we obtain the discrete energy

expression

11
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21 (wf+ wuax= (cbu)lt \L13\

This result will enable us to conclude that ¢, y and u converge with second order

accuracy. Introduce centerpoint and endpoint norms as follows:

vl = (3 wiax)” L14a)
lulle = ((u3+ud+D | v?)ax )2 \L 14b\
By summing \I.8\ and using \I.6\ we find
Y1 — o = ;-Uo + Zleui
and if we also assume endpoint conditions ¢p = dpg = 0 we obtain the inequality
lwle<Cllull.
The energy expression itself leads to the estimate
NulZ <l wll Il flle
while the continuity condition \I.9\ results in
b lle <llwll.
Thus, 3
lwlle <C2I £l \L 15\
Hlule <CIIfll
Idlle <C2II £l

Applying this to the homogeneous problem we conclude that u=p=y=0. Thus the

algebraic problem has a solution which is unique. Next, interpreting f as the truncation error,
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f= O(sz), and we see that &, y, and u converge with second order accuracy.

This conclusion about the second order accuracy of u applies not only to its values
at interior endpoints, as might be expected from \.8\, but also to the values ug and up4 at the

endpoints of [1_, 14] itself and which, we recall, were defined in eq. \I.6\ by one-sided difference

expressions.

Table 1 presents computations which verify these conclusions for the differential

equation \I. 1\ corresponding to the solution ¢ = x2( 1—x)2. Note that the errors are measured at the

endpoints of intervals.

Table 1.
Error Norms
# intervals ] “ (berror ”e “ Uerror ”e
6 1.234 e-2 1.851 e-2
12 3.472 -3 9.259 e-3
24 8.680 e-4 2.893 e-3
48 2.170 e-4 7.957 e-4
96 5.425 -5 2.080 e-4
192 1.356 e-5 5.312 e-5

Finally, we remark that more general boundary conditions involving bothuand ¢ '

also lead to the same conclusions.

1.4. The Potential Form:

By eliminating the flux u in \L. I\ we obtain the familiar second order equation¢” "= f

which we call the potential form. The difference scheme which corresponds to this may be
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obtained by eliminating u in the scheme just described. To illustrate, using \I.6\, eliminate u in

AUj = Ax f:] \L S\
to obtain
h2fj= (udj-wp), €l \L16\
h=Ax/2.

As we have seen, for uniform meshes the continuity conditions [u] = 0 result in

&; = ny;. iel, \L.9b\
To these are to be added the boundary conditions N

¢0=8—,¢M=8+

When f = 0 we obtain
y=pdp, o=py LI
and the maximum-minimum property of the solution is an immediate consequence. This can be

used to develop an alternate proof of convergence.

The potential form for the discrete problem can be seen to arise as a variational
problem associated with the discrete energy equation. The maximum-minimum property reflects
the fact that the associated algebraic problem is symmetric and positive definite. In the general
treatment, the potential form will be more suitable for numerical work, while the general form
involving ¢, y and u as a first order system will prove more convenient for theoretical discussions K

particularly for the development of energy estimates.
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II.A Compact Finite-Volume Method

We now turn to problem of treating the boundary value problem corresponding to
the steady-state solution of \I\ when V is a general volume. Our objective will be to partition V
into volume eléments 3V in such a manner that the prescribed boundary data on S can be accurately
transmitted to the boundary elements and then, by solving a discrete boundary value problem in
each element corresponding to a compact scheme, obtain an approximate solution in all elements
which also satisfies an energy expression, thus insuring convergence. As a result, we expect to be

able to treat problems posed in curvilinear coordinates as a special, but important, case.

In order to be able to generalize the arguments given earlier, a number of additional
notations will have to be introduced. Before doing so, we will first present a short overview of the
principal ideas which will be involved. ﬁe more detailed discussion and demonstration that the
final result again leads to an energy expression and thus produces a convergent scheme may be
omitted if the reader wishes to turn to the discussion of the time-dependent problem given in Part

III.

I1.1 An Overview: 3
Guided by the earlier discussion of the one-dimensional problem, we may identify |
the following requirements to construct a discrete approximation to div u = f,u = grad ¢ when
volume elements are involved:
(i) construct consistent, discrete approximations to divu, grad ¢ ina volume

element 3V in terms of variables associated with u and ¢ at appropriate points of 3V,

(ii) further relate these variables as may be required so as to lead to a determined
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and consistent system of algebraic equations from which u and ¢ can be determined whenever
boundary conditions are prescribed on S, and

(iii) develop a difference calculus which allows summation-by-parts identities to be
applied to volume elements and thereby lead to a discrete energy expression from which a

convergence argument can be constructed.

Figure 2. A normal volume element; P, Q,R, are the centers of the volume dV, a face 3S, and an

1

edge on which T is a vertex. Shown at Q is a basis [e] and e, the unit normal to 3S.

We will confine our attention to hexahedral volume elements 3V, although we will
allow certain of its vertices to coalesce, thereby including tetrahedra and related elements in our
discussion. Figure 2 indicates the centerpoint P of 3V, the center Q of an oriented face 3S, and a
representative centerpoint R of an edge of dS on which T is a vertex. In addition to the variables

$Q), w(P) introduced in our discussion of the 1-dimensional problem, we will also associate

another variable {(R) with points R. These variables will approximate the potential solution at the
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points indicated. Later, we will also associate a variable x with the vertex points T. Section I1.2
introduces notations which allow us to describe various geometrical properties of an element and
from which averaging and difference operators, corresponding to \I.4\, can be introduced.

Section I1.3 describes discrete approximations to the operators div and grad. The
approximation to div u is based on the use of Gauss’ Theorem in a volume element. Centerpoint
quadrature approximations to the surface integrals involved leads to a discrete operator divy, which
provides an intrinsically consistent, second order accurate, approximation to div u in terms of the
normal components of u at centerpoints of faces 8S. Thisisa familiar idea in finite volume
methods. An approximation to u = grad ¢ will result from the integral form

Joudx = ¢(B) - $(A)

in which the points A and B are identified with the points P, Q, and R in Figure 2. A midpoint
evaluation of the integral will determine two tangential components of u lying in a surface element
in terms of the variable  at edges of 3S(Q). The remaining non-tangential component ofu ondS
will result by using points P and Q and a one-sided evaluation of the integral at Q. This
approximation will lead to second-order accuracy as a result of imposing additional continuity
conditions for the variables on S, as occurred in the 1-dimensional case. We indicate by gradyd

the vector u evaluated at each face using this construction.

The compact scheme which emerges is described in I1.4 and can be summarized as
follows:
(a) In each element u, ¢, y, { satisfy divhu = f, gradpd = u, in which the normal components of
u arising in divy, u are to be evaluated in terms of the components given by gradyd.
(b) Across each oriented face 8S impose the continuity conditions [u-d3S]=I[¢] =[L]=0.
(c) If 3S lies on the boundary S of V, then ¢ and  are to be prescribed by the data.

These conditions exactly mirror the situation discussed for the 1-dimensional

problem. However, we shall find that they lead to an underdetermined system of algebraic
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equations and certain additional conditions will be required. These are furnished by the

(d) completeness conditions: These conditions determine L at vertex points in terms of the variable

y by the use of a bilinear interpolation which we indicate as C = (y). Among other things, This

will insure that is { bounded in norm by y.

This scheme will lead to an energy equation and convergence will be assured. The

potential form will also show that the maximum-minimum property also holds.

When curvilinear coordinates are used, many of the geometrical constructions
required for elements will be provided analytically. Furthermore, for Cartesian or more general
orthogonal grids, we will find that the variable { can be obtained by postprocessing the results
using the completeness conditions. This emphasizes the practical advantages of utilizing regular
elements throughout most of the domain V and restricting the general construction to boundary

elements.

I1.2. Geometrical Considerations and Notations

I1.2.1. Normal Volume Elements

We call {3V} a normal covering of V by volume elements 3V, themselves called
normal, if: (i) each element is a hexahedron, some of whose face areas may be allowed to vanish
providing its volume T remains positive (degeneracy), (ii) any face of a boundary element oV
which is in contact with the boundary surface S of V is tangent to S at the centerpoint of the face.
The first assumption has important consequences for the geometrical constructions which will now
be described.

Figure 2 indicates a normal volume 3V element with center at P and surface

elements 5S. Since 8V is a hexahedron, P may be found as the average of the verticies of 8V,
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while the average of the vertices on a face yields the centerpoint Q and the average of the vertex
points on an edge yields the centerpoint R. We may thus construct a righthanded, local coordinate
basis

[e(P)] = (e (P), ex(P), e3(P))
at P which is formed by unit vectors in directions which connect the pairs of opposite centerpoints
of the faces BS‘which we denoteas Qi+ i=1,2,3. The face 8S(Qj.) is assumed oriented into
OV, while 3S(Qj+) is outward; these are sometimes called inflow and outflow faces. We also
assume that the orientation carries over to neighboring elements by requiring that an outflow face
from one element be an inflow face on its adjacent neighbor.

Our primary requirement will be to evaluate the vector u(Q) at the centerpoints of
faces. In order to do this we will construct a unit basis [e(Q)] at each Q as follows: assume that
dS(Q) is the outflow face of 3V(P) and the inflow face of a neighboring element 3V(P), e.g., Q =
Q1+ Wetake (Q) as a unit vector in the direction of a line connecting P and P". Also take
€2(Q), €3(Q) as unit vectors in directions which connect Q with the centerpoints of the edges R of
8S(Q) so that [e(Q)]forms a right-handed basis as indicated in the Figure 2. Thus, e5(Q), €3(Q)
are tangent vectors on dS(Q) while e(Q) is non-tangential.

We may regard the points indicated as being related by displacement operators E;+
along a direction €; so that

Qi+ =Ejx P, Ryt j+=Ej+ Qix
with the further understanding that (i, j, k) indicates an even permutation of (1,2,3). The
averaging and difference operators defined earlier by \II.3\ may be generalized by writing
i KC) = (HE;4C) + H(E;_C)V2, A;¢(C) = (H(E;+C) - HE;_C)) \IL I\
for a representative centerpoint C. From this it is apparent that the summation-by-parts identities
\I.4\ continue to hold. |

Motivated by this notation we will write also A;x(Q) to indicate the distance

19
Compact Finite Volume Methods -(3.2) M.E. Rose
Sat, Sep 16, 1989



between the points Q;_ and Q; and write h; (Q) = A;x(Q)/2 . Also, h itself will indicate the

minimum value of h;(P) for all volume elements covering V.

I1.2.2. Covariant and Contravariant Bases on 3V
A basis [e] = (e, €7, €3) may be considered as a covariant basis from which a
reciprocal contravariant basis [e]~] = (el, e, eK) can be constructed satisfying
el = (ejx ex) Ne, ej= w/'e-(ejx ek) , ei-ej = Bij N2\
in which, if ejj = ej-ejand eli = el-el, then
e = det (eij) , 1/e = det (el). \IL 3\
Anticipating the connection to curvilinear coordinates, we call ¢;; element metric coefficients at P.
As a result we may write
u=Yuel =% ule; , LA
ui=y cijuj , Ui=Y eijui
uu=Yuul.
where u; = u-ejand ul = u-el are the (physical) covariant and contravariant components of u,
respectively, with respect to [e].
Using the unit tangent vectors €3, €3 the oriented area of a face 8S(Q 4) is
58S = 3S|-e3 x e3.= [3S|Ve-el \IL 5\
where
13S| = A9x(Q) A3x(Q)
Thus, the covariant component 3Sj of 8S is 3S; = |3SNVe. Also, elementary geometrical arguments
based on the fact that normal volume elements are hexahedra show that if
T = A1xAxx-Asx
then the volume measure T of OV is given by
7= A;x(Q) ¢(P)(dS(Qj.) + 3S(Qj+)) /2 = Tp-pyVe,

i=1,2,3. If we also assume posiive constants cy and ¢ such that ¢, h3<Tsc 1h3 and also set
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Ve( = ujVe we can summarize these geometrical results as
T=T19Vep, OSj=A4jxAgx Ve. \IL6\
Finally, we also observe that midpoint quadrature rules result in
fu-dx = u(C)-A x(C),
fu-dS = u(C)-38(C) NIL 7
_fu dV = u(C)-T.
where C is a representative centerpoint of the figure.
These facts summarize the principal properties of normal volume elements which

we shall require.

I1.3. The Operators divh and gradh.

The fundamental geometrical properties of the differential operators div, curl, and
grad stem from the following: div relates volume integrals with surface integrals, curl relates
surface integrals with line integrals, and grad relates line integrals with endpoints. We will now

describe how these properties can be systematically developed for the div and grad operators.

divp. Gauss’ formula
[divadV =JundS
when applied on 3V using the quadrature approximations indicated above suggests the definition
T divh us= 2iAiu-6S NI 8\
in which the difference operator applies to opposite face centerpoints Qj+ Using the component

representations for the terms on the right,

divpu = 771 5. A; ulS; \ILO\
or, noting \I[.6\,
divy u s(wfeo)"l ZiAi‘feui/Aix NI 10\
21
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grady: The approximations to be identified with u = grad ¢ will follow from the line-
integral evaluation

f cwdx = ¢(B) - HA) NI N
in which A, B are endpoints of a curve C. We will describe how the covariant components of u
with respect to the bases [e(Q)] can be determined at face centerpoints.

Tangential Components:

Recalling earlier notations, suppose €2(Q1+), €3(Q+) are tangent vectors fo the
face 8S(Q+) at Qq+. Evaluating \IL.11\ along the line connecting the centers of opposite edges
Ri+,2+ and R+ 31 we obtain

fcu'dx = LR+,jH) -TRy+5-) i=23
in which we have identified the potential variable on edges of dS by {. Next, use the quadrature
evaluation
fcu-dx = A x(u-ej(Qy+) = Aj xyj (Q1+)
in which Uj is the covariant component of u(Q1+). Thus,
A;jxuj (Qr+) =T Ry+ j+) - TR+ j-) j=23.
= 4 CQi+) NI 12\

Non-Tangential Components

We will also require evaluations of the non-tangential components of u at the
centerpoints of faces and, as for the 1-dimensional case, want to evaluate these in terms of the
value of y at the center P of 8V and of ¢ at the centerpoints Q of its faces. Let us first introduce the
one-sided difference operators

A HQj2) = [HQj+) - w(P)]. \IL 13\
Then \I1.8\ leads to
Juds = A $(Q;)

in which the line integrals are to be taken between Q;_ and P and between P and Q;+, respectively.
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We then evaluate the integrals by one-sided quadrature approximations using values of u at the

faces to obtain

fu-dx = (Ax(P)/2)u(Qj+)€i(Qj)

= (Ax(P)/2)u; (Qj2)
so that
(Ax(PV2)u; Qi) = A Qi) = * [HQiz) - w(P)]. \IIL 14\
We can summarize this construction as follows:
grady: u(Q) = grady, ¢ expresses the set of relationships between the covariant components

of u(Q) and values of ¢, y, and L at points Q on the faces of an element given by:

Tangential components:

Aj X'Uj Q)= Aj Q) NI I2\
Non-tangential components:
(A/2) uj (Q) = A7NQ). \ILL 14\
where
AENQ) = [HQ) - w(P)]. \IL 13\

Eqgs\I. 14\ should be compared to eqs\I.6\. By adding and subtracting these terms

we obtain an equivalent form:
AIX(P) K4 ul(P) = Al d)(P), NI 15\
w(P) = p; ((P) - Ax(P) A u;(P) /4

in which only centered operators at P are involved and which may be seen to be second order

accurate with respect to P. These forms play an important role in establishing energy results.

23
Compact Finite Volume Methods -(3.2) M.E. Rose
Sat, Sep 16, 1989



11.4. A Compact Scheme

We will now return to the primary problem of solving the boundary value problem
when V is a general volume with boundary S. Following our earlier discussion, we describe a
compact scheme for solving the problem as follows:
(i) in each element 3V solve
divqu=f, u=grad,¢. \II. 16\
Note that div}, u = f provides one equation for the six contravariant components of u on the faces
of the element, while u = gradp, d expresses three equations for the covariant components of u on
each of the six sides of 8V, in which the tangential components are evaluated in terms of the
variable { at the centerpoints of edges while the nontangential components are determined by the
variables ¢ and y.
(ii) use
ui = ¥ eliy; LI
from \II.4\ to relate the contravariant components to the covariant components arising in \IL. 16\..
An important simplification will occur in this construction whenever ell = 0, i#j.
When this situation arises we call the scheme strongly compact, otherwise we use the term
weakly compact. For a strongly compact scheme the tangential components of u on faces will not
affect the computation directly (and, thus, neither will the variable {) but may, if required, be
determined in terms of the variable { by a postprocessing technique using the completeness ]
relationships described below. This arises when Cartesian or orthogonal curvilinear grids are
involved.

(iii) impose continuity conditions for u, ¢, { on faces common to neighboring elements. In case

5V is a boundary element, the data on S will be assumed to determine the data  and { on any face

tangent to S by the use of a Taylor series approximation.
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We are required to calculate u and ¢ at the centers of the faces of elements, y at the
centers of the elements themselves, and { on the edges of the faces. By examining a cube, we can
Verify the fact that the number of unknowns involved in the system of equations resulting from the
steps just described will exceed the number of equations by just the number of interior edges of
elements, i.e., those edges which are incident to four adjacent elements. This same result will also
hold for a more general covering {3V}. In order to make the scheme determinate we will add the
following

(iv) Completeness Conditions:

Let N(R) denote the centerpoints P of those volume elements which are incident to
an edge having R as centerpoint. Using a bilinear interpolation, express {(R) in terms of the

values y(R) which are associated with the neighboring elements. The result can be written

LR) = Y w®)y(P) \IL 18\

where the summation includes points P in N(R) and the weights w are non-negative and sum to 1.
As noted above, when the scheme is strongly compact \II.18\ will allow the tangential components

of'u on faces to be calculated separately.

I1.5. Energy
We will now show how an energy expression can be derived. From it the existence
and uniqueness of the solution of the discrete problem will follow. j
Following the argument given for the one-dimensional case, use the summation
rules \I.4\ and also \II. 1 5\ to obtain
tdivhdu = . A dul 3S;
= X, [uid 4 ul 8S; + Ay pyui 35
=Y. [Gy+ 1/4 AxAup) Ajui 8S; + Ajxpju (pjui 8Sy)]
= WL, 4juidS;+ T, Apxpi(uj ui 8S))

25
Compact Finite Volume Methods -(3.2) M.E. Rose
Sat, Sep 16, 1989



or, recalling that 5S; =VeA;xAyx,

tdivpdu = ¢ Tdivp u + 10 X.p;(yj ul ve)
so that summing over volume elements yields

Yy divpdu 1= Lyddivhu 1+ Ty (X, uiujuive)} 1.

Finally, using the telescoping property of the ZV divy, term on the left-hand side and recalling that
T="1yVeq we find

YsdudS=Yyoddivhut+ Yyuur \IL 19\
which is clearly consistent with the integral form of the energy equation given by eq.M\.
Noting that \II. 18\ will insure that { is bounded in norm by v, the same arguments as were given

for the one-dimensional problem will imply that this more general compact scheme converges and

yields second order accuracy for &, y.C and u.
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I1.6. The Potential Formulation

We shall indicate how the scheme just described can be formulated solely in terms

of &, and , corresponding to the potential form V2¢ = f. Again following our discussion of
the one-dimensional case, we write, using \IL.9\ and \I1.4\,
tdivpu = ¥ Ajul 85
=LA ():j eliu; )3S;
or, regrouping terms:
rdivpu = LAy eiiu; 0i+ I; (4 Ly olluy) B5i \IL20\
Using \I1.14\ in the first summation we find
LA el u; 385 = 25 ell A0 BSi/ A
=4 T ell ¢ 5S;/ Axx - 4 w(P) L.y el 8S;/Ax \L21N
in which the summands are evaluated at the centers of faces about the centerpoint P of the element.
The second group of terms in \[1.20\ involve only tangential components of u at face centers, and
we may use \II.12\ to express these in terms of values of { at the edges. In this manner, all of the
terms in \II.20\ may be expressed in terms of the values of &, y, and  in each element. This leads
to the potential operator divy, grady, §.

Since ¢, y, and { are assumed continuous across faces, the continuity conditions
for u across a face 8S; common to neighboring elements with centers at P and P reduce to ;
[ul 3541 = 0.

The tangential covariant components of u are continuous, since they are determined by C.
Recalling \IL. 14\, the condition that the nontangential covariant component u; be continuous is then
(Ax+Ax) = Ax yHAX ¢ \IL.22\

which may be compared to\l.9a\
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Consider the treatment of V2<b = 0 using a strongly compact scheme. In this case

ell = 0, j#i and the condition divy, grady, ¢ = 0 as expressed by using \II.20\ reduces to

T el & 8Sj/ Aix = y(P) Lp; el S5/ Aix \IL23\
which may be written
y=L.o¢ \IL24\
where
o = (u; 1 883/ Ap%) / (L ef 857/ Apx), IL25\
Ei ai =1.
If we write the continuity condition \I[.22\ as
b=Biw+pBi v Bi+Bi =1 \IL.26\

we can conclude that the maximum-minimum property holds. This same conclusion can be

reached for a weakly compact scheme.

Referring to the energy expression, it will be seen that the potential form can also be
viewed as arising from a variational problem. By using the completeness relations, the
computational problem will thus reduce to determining the variables ¢ and y associated with a
symmetric, positive definite matrix and thereby allows a variety of familiar solution techniques to

be used.

I1.7. Degeneracy

Recall that the definition of a normal volume element allowed for the area of one or
more of its faces to vanish. Such degenerate elements play a natural role at the boundary S and are
especially relevant, as will be shown shortly, in treating problems in curvilinear coodinate at the
origin.

Let us suppose that a face with center Q is degenerate, i.e., dS(Q) = 0. Referring

28
Compact Finite Volume Methods -(3.2) M.E. Rose
Sat, Sep 16, 1989



to \IL.8\ we see that the term involving the factor dS(Q) will not contribute to the evaluation of divy
u and, as a result, the contravariant component of u(Q) need not be computed on the face.
In the potential form, this simply modifies the weight a associated with the degenerate face in

\IL25\

I1.8. Curvilinear Coordinates

We will illustrate how the discussion applies when curvilinear coordinates are used.
With their use the basis (e;, €js ex), which was required at each face of a volume element, can be
constructed analytically, thereby considerably reducing the preliminary computational steps
required. Using the potential form, we shall also illustrate the treatment of the situation at the
origin which gives rise to degeneracy.

We indicate by x = x(q) a mapping in general curvilinear coordinates. The vectors

=a—x

dqt

8i \IL27N

are tangent vectors on the coordinate lines formed by g = const. and gK = const. so that an element
of length is determined by
ds2 = T ¥ gjjdqidg)
in which gjj are metric coefficients given by gj; = gi'gj. Considering [g] = (g, 8j, gK) asa
covariant basis, a reciprocal basis (gi, gj, gk) is given as
gi= (g g N8
in which g = det(gij). Also, ifgij = gi-gj,, then det (gij) = g"l.

Consider a curvilinear volume element dV which is formed as the image of a
rectilinear volume element whose volume is dqidqiqu. Then the edges of a face on dV given as
qi = const. are coordinate lines on which 8j 8k are tangent vectors and the oriented area of the face
is

ds = (gj * gi) dgldqk.
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We may associate a normal volume element 8V with dV by constructing tangent
planes through the centers of the surface elements through dV. From geometrical considerations it
is evident that if we make the following identifications

Aix e; = g; dqi i=12,3 \IL.28\
the results of our earlier discussion will apply. If ui(g) indicates a contravariant component of u in
the curvilinear system we find, in place of \II. 10\,

divp u = (Vgo) ~1 L. A; Vg ui(g) / dql. AIL29\
Similarly, u = grady, ¢, expressed earlier by \II.12\ and \II.. 14\, now result in

Tangential components:

dgluj (g) = A;C \IL30\

Non-tangential components;

(dq2) y; (g) = AT \IL31\

Examples
The cases of cylindrical and spherical coordinates may help illustrate these results.
Cylindrical Coordinates:

Here q = (r, 6, z) and a calculation gives Vg = rand Vg gl1 = r, Vg g22 = 111,
vg 833 = r. The centerpoints of faces Qj+ have the coordinates:

Pi+= (r£Ar2,0,2), Py+=(r,0+A0/2,2), P3+=(r,0,z%Az2)
Adopting more standard finite difference notations, let ¢ (iAr, jAD, kAZ) = & jk and extend the

meaning of the spatial averaging and differencing operators p,A to this case by writing (pr, H

6‘
uz), (Ar’ AB, Az). We find that in a cell with center at P = (iAr, jAO, kAz)
. _ 4.1 , _ o
divp gradh b= 7 {2Ar2 [(r + AV2) drorpp i + (1 - AY2)] ic1pajx JL3A
+ 1 7o Pijxt %uzd)i,j,k ~ 0o Wijk}
7a\G) Az
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Compact Finite Volume Methods -(3.2) M.E. Rose

Sat, Sep 16, 1989



in which

00=r(1+1)+ 1
A2 Az2 A@°

Assuming equal spacings, the continuity conditions across faces have the form

¢ =y \I1.33\
in which p = (ur, pe, pz).
A cell with center at (Ar/2, jAB, kAz) has the origin as a degenerate face. In this
case we see that the coefficient of the value of the unknown ¢y, Jj,k vanishes, so that no assumption

other than boundedness at the origin is required for the scheme.

For cells not involving boundary points, we may use the continuity condition in

\I1.29\ to express the result solely in terms of y. By adopting the notation 6r = Ar/ Ar , etc. to

indicate divided differences, the potential operator for such cells reduces to the form
divy gradnd = { O + Lo+ L8645, Ju \IL.34\
r

which can be seen to be consistent with the familiar differential form in cylindrical coordinates.
However, we emphasize again that the boundary conditions involving ¢ cannot be handled directly

from this form but must, instead, be developed using \II.30\ directly.

Spherical Coordinates:
In this case q = (r, ¢, 8) and a calculation shows Vg = r2 sin ¢ while
Vggll=12 Vg g22=sin¢p, Vg g33 = 1. Again assuming a uniform mesh spacing, we find in

an element with center at P = (r, ¢, 0) that
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sin 2
divp gradn o= —3— {5 [(r + AU2) denrzg + (5 - A2 B ]
r3sin  2Ar2
+ 1 [sin(x + Ax/2)ij+1/2.x + sin(x - Ax/2) j-172.x]

2rA)(2

%N obiik = 00 Wijk}
AO
\IT.35\

in which
Og = {L (2 + Ar%/2)siny + 1 sinx cosAx/2) + —17} . -

Ar? AXZ AB

With u = (ur, px, u 6) the continuity conditions again lead to$ = py. We see that

the situation at the origin is exactly similar to that in the previous example; in particular, only the
boundedness of the solution at the origin is required. Away from boundary cells, the continuity

conditions can be used to reduce matters to the form

Ay = At { (22 + Ar22) sinx 52 + 2 siny d;il;
risiny

+ siny cos Ay/2)d} + 84 } w \IL.36\
which can be seen to be consistent with the potential form of the diffusion equation in spherical
coordinates. We again add a precautionary note about attempting to treat the boundary conditions

involving ¢ from this form.

11.9. The curll. Qpemtor

In our treatment of u = grady, ¢, emphasis was placed on evaluating the tangential
components of u at the center Q of each face 8S using a covariant basis [e(Q)]. Using\IL.12\,

these were expressed in terms of the variable { which was associated with the centerpoints of the
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edges of the face. The completeness conditions \II.18\ were then used to relate { to y. The
contravariant component of u which arose in the definition of divju were evaluated in terms of
these covariant components using \I1.4\.

It is desirable, also, to also have a finite volume approximation to the curl operator
which we will indicate by curlpu. A satisfactory calculus would then yield both divy, curlpu = 0
as well as curly, grady, ¢ = 0 as identities. We shall now indicate how this may be accomplished.

In Figure 2, T indicated a representative vertex of an element. Let [€(T)] indicate a
basis formed by the edges which intersect at T using the orientation established by [e(P)]; ai;o let
&(R) indicate the translation of &(T) to the centerpoint R of an edge TT". A suitable definition of
curly, is suggested by the following: If w = curl u, then a quadrature approximation in Stokes’
formula

IﬁS w-ndS = JGBS u-ds
leads to
@3S = Ay x-Aj (u-ég) - Aj x-Ay (u -éj)

involving the edges of a face dS. Using component representations, we are led to define curly, in

terms of the set of contravariant components w! associated with the faces of 5V by means of

w=curlyu = o = (& i /Ajx - Ay 6j/Ay %) \IL.32\
in which the covariant components G = u-é. With this definition the identity
divp curlyu = 0 N33\
follows by noting the cancellation of ‘line integrals’ along the common edge of faces. (It is also
possible to identify a vector associated with the centerpoint of dV, say <curlju> = Zpiwiei(P),
but this vector will not be annihilated by divy, and for which reason will not be considered further

here).

As already noted, our earlier treatment of u = grady, ¢ will not fumish a direct

means of evaluating the covariant components @i occurring above and thus we cannot interpret curlp
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grady, ¢. In order to overcome this, introduce a new variable x which will be defined at vertices T
and is often called a box-variable. Recalling the intrinsic definition of grad indicated by \IL. 11\,
we will define grady, along edges by
Ax (R) = Ajx (R) N34\

in which A;x is the distance between vertices along an edge with direction &; on which R is the
centerpoint and A; X (R) is the difference in values of X at the vertex neighbors of R. Then

ol (@) = (A5 Ak X - Ak Ajx )+ AjxAgx =0
ie.,

curlp, grad, $=0. \IL.35\

This suggests a theoretical advantage in using the box-variable ¥ instead of { which
was used in the earlier discussions. The most direct way to accomplish this is to define the edge
variable L(R) as the average of x at vertices neighboring R, i.e., { = ux, and also re-express the
consistency conditions \II. 18\ so that now x(T), rather than {(R), will be related to y(P) at each
interior vertex by a bilinear interpolation of the form x = Q(y), which will now involve the six

neighboring elements having T as a vertex.
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II1. The Time-Dependent Problem.

I11.1 The Potential Form.
The potential form of the time-dependent diffusion equation \I\is, with f =0,
¢ = div grad NI BAY
The discrete finite volume operator divy, gradp, ¢ corresponding to div grad ¢ has been shown to
yield a discrete energy expression which corresponds to the time-independent energy terms in M\
The principal question remaining, therefore, is how to include the term ¢y in the numerical scheme
which will provide the approximation to the term (—%J ¢2dV in the energy expression.

Divide [0,T] into N equal parts of width At, write t, =n At, and adopt the standard
finite difference notation u(nAt) = uP. Also, let pi;, A, indicate the central averaging and difference
operators which effect the time index as indicated:

ppull = @2 40172y 1 \IIL2\
Aul — 12 _ yn-1/2),
From \L.4\ it is evident that
py Ayt = %At (yM)2. \IIL3\
We will consider the following three-level

A. Compact Scheme.

A,y = At divy, grady, ¢" \II1.4a\
i =yt \III.4B\
to which the appropriate continuity and completeness conditions \II.22\ and \II. 18\ are understood
to apply. By multiplying \ITI.4\ by yM we obtain
%At (y")2 = At -y divy, gradp, ¢ \ITT. 6\
in a volume element . The term on the right-hand-side has already been shown to lead to the

energy expression \II.19\. Thus, by summing \III.6\ over elements in a time-strip and using the
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implied continuity conditions across faces we will obtain
Zvia (M2 7+ At Ty ultul 7= At Y g o1 un-3S \IIL. 7\
which is the discrete energy expression which was expected.
Assuming dissipative boundary conditions in the sense of Kreiss [3], it is evident
from this result that we can conclude: both y™ and $™ are bounded in a discrete norm by the initial

and boundary data. Because the scheme is consistent, this also implies that the scheme converges.

(Our previous discussion of the maximum-minimum property can allow us to conclude —

convergence as well.)

We can summarize this in several equivalent ways, in each of which the additional

continuity and completeness conditions are assumed to apply:

B: 2-step:
Wt 12 - yft = (Ay2) divy, gradp, $n*1/2 \IIL8a\
and
w1y 2 - (Ay2) divy, grady, gt 172 \ITL.8b\
As above, this is a two-step scheme in which the first requires solving the equations in a time strip
for p1t1/2 and yntl/2 implicitly in terms of the boundary data for ¢(t;,+1,7) and the initial data
yM. With these values determined, then wn*! can be determined explicitly from the second set of !
equations and furnishes initial data for the next time strip. |
C: L-step:
Eliminating " in the above scheme we find
Ay = Aty divy, gradp, o1 . \ITLON

This is a one-step Crank-Nicholson form.
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Example:
Using our earlier 1-dimensional notations, consider the treatment of ¢ = ¢y -
We find that the 1-step scheme may be written in potential form as
Apyil =« py (um - g, i € I, (centerpoints) \III.10a\
where « = At /h2, h = Ax /2 To this we add the continuity conditions in the form
py 172 _gn+l/2=9 i € I (endpoints).  \ITI.10b\
Comparing with \.9\ we again recognize that the variables cbi’ y; are the odd-even components ofa

tri-diagonal system and are therefore readily obtained at each time step.

I11.2 An ADI Scheme:

Except for the one-dimensional example just considered, the basic scheme \IIL.4\ is
implicit and effective solution methods must be considered in order to treat the general problem in
higher dimensions in a practical manner. It is especially desireable that a proposed method also
provide an effective means of treating the steady-state problem as well. We will now show thata
Peaceman-Rachford-type ADI scheme, using a straightfoward treatment of intermediate boundary
conditions, can solve the finite volume problem with second order accuracy in both space and time.
Again, the existence of an energy estimate will provide the key to convergence.

We will find it convenient to make a few slight changes in some of our notations. !

First, we will let v indicate the time average of a variable v, i.e., let

Vi = g vi NILIIN
Also, we let
Fi" = 'A(un-dS;) NIL 12\
so that \I[.9\ leads to
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divpu™ = F{ + FyM + F3l,
Then, for example, the 1-step scheme \III. 10\ can be written as
Ayt =At(F 1"+ F " +F 3" \III.13\
in which u = grady, ¢. Finally, we indicate by g" assumed boundary data for ¢ on S at time t".
Limiting our discussion to two-dimensions, consider the following 2-step scheme:
“ Y+ 1/2 0 = (Ay2) (F{ P12 + BpD) \IIL 142\
Yt o0+ 172 2 (Ay2) (F 0+ V2 4 oty \IIL. 14b\
and note its similarity to \IIL.8\. Recalling our discussion of the one-dimensional example, it is
evident that the first step can be solved as a one-dimensional problem using boundary conditions
et 12 - g“+1/2. We solve the second step similarly, but with the boundary conditions
¢n+1 = gn+1_ .
Adding and subtracting \III. 14a\ and \III. 14a\, and relabeling the time level for
purposes of later discussion, we find
Y12 _yn=1/2 = A¢(F P + F M) \IIL. 1 5a\
Yl - y N =(Ay4) (Fpt~ V2 _ pyntl/2), \IIL15b\
The consistency of (a) with the 1-step Crank-Nicholson form \III.11\ is evident, the truncation
error being O(Atz). Eq.(MII.15b) is also consistent with \III.4(b)\ since the right hand term is
O(At3). We may regard \III. 14\ either as a scheme to approximate the solution of the compact
scheme \II1.4\ or as an independent scheme to solve the differential equation. }
We shall show that this scheme leads to an energy estimate which is consistent with
\III. 7\ to within terms of O(Atz). Recalling the basic energy argument in\l.1 1\ and the definition
of Fi in \ITL. 12\ we find /
wF1 = A(guldS)) - p(uluy)
- F 3 - AQUS)) - py(aty)
so that by multiplying \III.15a\ by y and then using \III. 1 5b\ we find
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i A (w2 T+ [y ulug)0 +py(@3)0] = [auldS)) + AGEAS)] + O(ard).
Summing over volume elements and noting that y = y + O(Atz), etc., we again obtain the energy
expression \II1.7\ to within terms O(Atz). This result is sufficient to enable us to conclude that the
ADI scheme converges and furnishes an approximation with the same degree of accuracy as the

compact scheme \III.4\. This result is independent of any of the fixed ratios At/ (Axi)z occuring in

either scheme.

To treat the 3D problem, consider in place of \III.14a\, etc.,the following:

gt 1/4 _ = (Ay4) (QF |1 + Fynt 14 \II1. 16\
Yt 1/2 - yn+1/4 = (Aya) (F2“+1/4 + 2F30* 172y
ynt3/4 - yn+1/2 = (Ay4) (F2n+3/4 + 2F30* 172y
lUn+1 - \IJn+3/4 = (At/4) (2F1"+1 + F2n+3/4 ).
to which the intermediate boundary conditions d)“+k = g“+k, k=1/4,1/2, 3/4, 1 apply. Then
gl -y = At [(F1n+1 +F )2+ (F2n+3/4 + F2n+1/4 V2 + F3n+1/2 ]
so that the scheme is consisient with the Crank-Nicholson form. Also,
(ot L+ yny2 - 172 = (Ay4) [(F|VFL - F i) + (Fp0*3/4 _ppntl/4 ),
The last pair of equations, which correspond to \III.15\in the 2D case, can provide the basis for

an energy argument, although we omit the details here.
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Conclusions:

We have described a finite volume method which closely maintains the parallel
between differential and difference arguments. By using intrinsic geometrical properties of the
elements, we were able to describe discrete versions of the div, curl, and grad operators which led,
using formal summation by parts techniques, to discrete energy equations as well as to the
identities divy, curlp u = 0 and curly, gradp, ¢ = 0. The solution of the initial- boundary value
problem for the diffusion equation was described directly in terms of these operators by compact
schemes and the resulting energy equations insured convergence. The schemes could also be
simplified to a potential form which can offer computational advantages. Finally, the treatment of

general curvilinear coordinates was shown to result from a specialization of these results.
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